[Touslesmembres] ISTEAH
Samuel Pierre
samuel.pierre at polymtl.ca
Dim 11 Déc 14:08:05 EST 2022
Félicitations aux étudiants *Wougens Vincent* (mathématiques) et *Amos
Noël* (génie informatique), ainsi qu’au professeur *Jean-Eugène Piou*!
Dirigé par le professeur associé à l’ISTEAH, *Jean-Eugène Piou, ing.,
Ph.D.*, du Massachusets Institute of Technology (MIT), le travail de
recherche de deux étudiants de maîtrise de l’ISTEAH a fait l’objet de
deux articles scientifiques dans une prestigieuse conférence de
l’Institute of Electrical and Electronics Engineers (IEEE) à New York,
du 26 au 29 novembre 2022. Toutes nos félicitations aux étudiants
*Wougens Vincent* (mathématiques) et *Amos Noël* (génie informatique),
ainsi qu’au professeur *Jean-Eugène Piou*!
_Voici un résumé du premier article en question_ :
*A Deep Learning Application to the 2004 Flooding of the City of
Gonaïves in Haiti *
Wougens Vincent^1 , Amos Noel^1 and Jean E. Piou^2 , Senior Member, IEEE
1: Graduate Student at *Institut des Sciences, des Technologies et des
Etudes Avancées d’Haïti (ISTEAH*), Saint-Marc, Haiti
2: Research Scientist in Cambridge, MA, USA
**
**
*Abstract:*
In this paper, a deep learning network is considered to study the impact
of the flooding on the city of Gonaives that occurred on 18 September
2004. Satellite images collected before and after the disaster are
segmented then partitioned into 2 and 3 classes and later used to train
and test the deep learning network, to estimate the damage that was
inflicted upon the land topography and infrastructures of the city.
Experiments conducted on the data revealed high performance of the
network to identify areas buried in muddy water and regions of the city
that did not suffer any damages. Data augmentation scenarios carried out
on the training set translated into higher performance of the network on
the test data than the result achieved when it was trained solely on the
original images. The practicality of the deep learning to locate areas
that were severely affected by the flood and estimate its impact on the
residents of the city of Gonaïves is revealed.
*Published in: *2022 IEEE 13th Annual Ubiquitous Computing, Electronics
& Mobile Communication Conference (UEMCON)
<https://ieeexplore.ieee.org/xpl/conhome/9965569/proceeding>
*Date of Conference: *26-29 October 2022
*Date Added to IEEE /Xplore/: *01 December 2022
*ISBN Information:*
*DOI: *10.1109/UEMCON54665.2022.9965684
<https://doi.org/10.1109/UEMCON54665.2022.9965684>
*Publisher: *IEEE
*Conference Location: *New York, NY, NY, USA
_Voici un résumé du deuxième article en question_ :
*Analyses of 2010 and 2021 Earthquakes that Struck Haiti Using a Deep
Learning Network*
Wougens Vincent^1 , Amos Noel^1 and Jean E. Piou^2 , Senior Member, IEEE
1: Graduate Student at *Institut des Sciences, des Technologies et des
Etudes Avancées d’Haïti (ISTEAH*), Saint-Marc, Haiti
2: Research Scientist in Cambridge, MA, USA
*Abstract:*
Presented in this paper are results from analyses conducted on satellite
imagery collected on the 12 January 2010 earthquake with a moment
magnitude (Mw) of 7.0 that devastated Port-au-Prince, the capital of
Haiti, and the 14 August 2021 earthquake with moment magnitude (Mw) of
7.2 that struck the southwestern peninsula of Haiti. A deep learning
network architecture that constitutes the main engine of this research
investigation to carry out analyses from images collected before and
after the earthquakes is considered. The images are segmented, labelled
then randomly chosen to form training and testing datasets that are
partitioned into 3 classes. Localization of regions deeply affected by
the impacts of the earthquakes and identification of land areas, road
infrastructures and buildings severely damaged are useful information
that the DL network provides to demonstrate its effectiveness. Data
augmentation on the training side is considered to enhance the
performance of the DL network on testing and shows its usefulness to
reduce performance accuracy error and make the DL network a suited
component in damage assessment. So, in the future, the DL network can
integrate recovery and relief efforts as a tool that one can leverage on
to limit the impacts of natural disasters on human lives.
*Published in: *2022 IEEE 13th Annual Ubiquitous Computing, Electronics
& Mobile Communication Conference (UEMCON)
<https://ieeexplore.ieee.org/xpl/conhome/9965569/proceeding>
*Date of Conference: *26-29 October 2022
*Date Added to IEEE /Xplore/: *01 December 2022
*ISBN Information:*
*DOI: *10.1109/UEMCON54665.2022.9965694
<https://doi.org/10.1109/UEMCON54665.2022.9965694>
*Publisher: *IEEE
*Conference Location: *New York, NY, NY, USA
-------------- section suivante --------------
Une pièce jointe HTML a été nettoyée...
URL: <http://mail.grahn-monde.org/pipermail/touslesmembres_grahn-monde.org/attachments/20221211/53ac886f/attachment.htm>
-------------- section suivante --------------
Une pièce jointe autre que texte a été nettoyée...
Nom: SOzObhzyRJ5MeLwl.jpg
Type: image/jpeg
Taille: 64068 octets
Desc: non disponible
URL: <http://mail.grahn-monde.org/pipermail/touslesmembres_grahn-monde.org/attachments/20221211/53ac886f/attachment.jpg>
Plus d'informations sur la liste de diffusion Touslesmembres